REPORT ON CHECK INSPECTION OF KIRIBURU IRON ORE MINES OF SAIL IN WEST SINGHBHUM DISTRICT

•

Name and designation of inspecting officer: SHRI ANUPAM NANDI, RCOM, IBM, RANCHI

Date of Inspection

: 27.02.2019

1. General information of the mine:

i)	Name of mine	:KIRIBURU IRON ORE MINE
ii)	Owner	M/s Steel Authority of India Ltd
ìii)	Nominated Owner	: Shri H N Rai, Director(Tech), RM&L
iv)	Mining Engineer	: Shri Manoj Kumar, DGM (Mining)
v)	Agent	: Shri D K Barman, GM (Mines), KIOM
vi)	Mine Manager	: Shri Ram Singh, DGM (Mines), KIOM
vii)	Lease Area	: 2897.499 Hect. (all forest land)
viii)	Location	: VillKiriburu, Dist.W Singhbhum,
		State- Jharkhand
ix)	Lease Period	: 30 years
x)	Date of Expiry	:31.04.2020
xi)	Date of approval of Mining Plan	n: 13/10/2015
xii)	Date of approval of scheme	:13/06/2018
xiii)	Period of Mining Plan/	: 01/04/2015 to 31.03.2020
	Scheme of Mining	

xiv) Production(2017-18): 4195620 tonnes

2. Brief description of the mine:

a. A brief description of the mine covering location, geology, problems associated

with mining of the deposit etc. may be given.

Kiriburu Iron Ore lease is located in Singhbhum (West) district of Jharkhand state. The lease area is covered under Survey of India, Toposheet No. 73 F/8.

Koina and Karo are the two important streams which play an important role in the drainage system of the area. River Koina is on the western slope of the Kiriburu-Meghahataburu hill range and is fed by a number of tributary nallah like Sankoja, Gagirathi, Meghatu, Sasangda, Pardih, Rangring etc. River Karo is below the eastern slopes of the deposit and is like-wise fed by mainly Pachari and Rogar Nallahs. There is no human settlement in the near vicinity of the deposit. The deposit lies in the famous Saranda forests. There is no human settlement within 15 km of the lease boundary in Jharkhand state.

The period from July to September is characterized by heavy downpour and incessant rains, the average annual rainfall being 1500 mm. October and November are the pleasant months, while the peak winter months are December to February when the temperature falls down to 4.4° C. The summer months of March to June are quite hot and dry. The temperature rises to 45.5° C during these months.

The structural framework of the area is very complex. It has undergone three successive phases of tectonic deformations: D1, D2 and D3. The BIF and the host rock of the area displays numerous structural features including folds, minor faults, joint network (3 sets), fractures and pinch-swell structures.

Jones (1934) in his pioneering work on Singhbhum-Bonai region, first postulated that the Precambrian sedimentary iron ore bearing formation (Iron Ore Series.) is an asymmetrical overturned synclinorium plunging towards north. The Western limb of the synclinorium comprising of Bonai Iron Ore Range. (Sasongada-Kiriburu-Dandrahar) is overturned and dips at high angle $(30^{0} \text{ to } 70^{0})$. The regional strike of the area is NNE-SSW. While the Eastern limb composed of Noamundi-Joda-Khandabandh deposits are complicatedly folded and dipping toward west. This regional fold (well known as Horse shoe synclinorium in geological literature) assumes a horse shoe shape, opened to north and closed to Khandadhar-Malangtoli blocks. The Central area (Jamda-Koira valley) enclosed in the horse-shoe largely bear phyllite with the tuffs, lavas and cherts. The western portion of this structure is almost continuously comprised of BHQ/BHJ which forms the hanging wall of the main Bonai Iron Ore body. Lateritic ore

Geothitic ore Hard Laminated ore Soft Laminated Ore Blue Dust

2.b) DETAILS OF MINING MACHINERY DEPLOYED IN THE MINE DURING 2017-18

SL. NO.	NAME OF THE MACHINERY	NAME OF MANUFACTUR ER (WITH COUNTRY)	NO OF UNIT S	ENGINE H.P OF EACH UNIT	IDLE HOURS DURING 2017-18	AV HOURS WORKED DURING	UT HOURS DURING 2017-18	UT%
						2017-18		
SHOVEL				1	1			
EX-21	EXAVATOR	HYUNDAI	1	1.62 CuM	5921	7178	1257	18
BE-16	EXAVATOR	BEML	1	4.5 CuM	0			0
TH-17	EXAVATOR	TELCOM	1	5.9 CuM				0
BE-18	EXAVATOR	BEML	1	4.5 CuM	337	995.5	658.5	66
EX-20	EXAVATOR	KOMATSU	1	9.5 CuM	3270	5297	2027.0	38
EX-22	EXAVATOR	KOMATSU	1	9.5 CuM	2964	7139	4175.0	58
EX-23	EXAVATOR	KOMATSU	1	9.5 CuM	2259	6918	4659.0	67
DUMPER								
82	DUMPER	BEML	1	50 Te				0
84	DUMPER	BEML	1	50 Te				0
85	DUMPER	BEML	1	50 Te				0
86	DUMPER	BEML	1	50 Te				0
87	DUMPER	BEML	1	85 Te	269	1217	948	78
88	DUMPER	KOMATSU	1	100 Te	1434.5	3709.5	2275	61
89	DUMPER	KOMATSU	1	100 Te	2365.5	5868.5	3503	60
91	DUMPER	CAT	1	100 Te	4509.5	6597	2087.5	32
92	DUMPER	CAT	1	100 Te	1698	2742	1044	38
93	DUMPER	BEML	1	100 Te	4670.5	6605.5	1935	29
94	DUMPER	BEML	1	100 Te	3126	4920	1794	36
95	DUMPER	BEML	1	100 Te	4107	6730.5	2623	39
DRILL								
DM-17	DRILL	IR-ROTACOL	1	160 MM	1241	2001.0	760	38
DM-18	DRILL	IR-ROTACOL	1	160 MM	1289.5	2512.5	1223	49
DM-19	DRILL	IR-ROTACOL	1	160 MM				0
DM-20	DRILL	IR-ROTACOL	1	160 MM	1961	4939.0	2978	60
DOZER								
DOZ-27	DOZER	BEML	1	410 HP	1899.5	3010.5	1111	37
DOZ-28	DOZER	BEML	1	410 HP	1268.5	1539.5	271	18
DOZ-29	DOZER	BEML	1	410 HP				0
DOZ-30	DOZER	BEML	1	410 HP	3145	4799.5	1654.5	34
DOZ-31	DOZER	BEML	1	410 HP	3095	4698	1603	34
DOZ-32	DOZER	BEML	1	410 HP	1819	3369.5	1550.5	46
DOZ-33	DOZER	BEML	1	410 HP	1425	2671	1245	47
PAYLOAD	ER			•				
FEL-4	PAYLOADER	KOMATSU	1	2.9 CuM	1282	1963	681	35
MOTOR G	RADER				•			0
MG-7	GRADER	BEML	1	280HP				0
MG-8	GRADER	BEML	1	280 HP	1050.5	1454	403.5	28
WATER SPRINKLER				1		-		0
	WATER							
WT-79	TANKER	BEMI	1	50 T				0
	WATER		· · ·					
WT-83	TANKER	BEML	1	WS 28	3827.5	4860.5	1033	21
WT-90	TANKER	BEML	1	WS 28.2	3973.5	5021	1047.5	21

3. Implementation of Mining Plan or scheme of Mining: 2017-18

Sl.No									
1.	CONSERVATION Proposal in the approved		Observation regarding implementation of proposals given in						
	OF MINERALS MiningPlan or Scheme of mining		approved Mining PlanOr Scheme of mining.						
		(Period							
		from01.04.2015to31.03.2020.)							
a)	Exploration:	12 Nos, 1200 Mts 100x100	3 Nos, 30 Mts, 200x200 interval (North block)						
		interval(South block)							
b)	Utilization of sub	Sub grade material are blended with	Sub grade material are blended with high grade material in the pre crusher						
	grade mineral:	high grade material in the pre crusher	stockpile and feed to hopper.						
		stockpile and feed to hopper.							
c)	Any other proposal								
	for monitoring:								
2.	SCIENTIFIC MINING								
		1							
a)	Mine Development	Open cast mechanized mines, dumper-	Open cast mechanized mines, dumper-shovel						
	and method of	shovel							
	mining:								
b)	Handling of	NA	Waste material dumped in waste dump & sub grade material are blended						
	Waste/sub grade		with high grade material in the pre crusher stockpile and feed to hopper.						
	material:								
c)	Area reclamation &	8.34 Ha for 2017-18	4.24 Ha in 2017-18						
	restoration:								
d)	Any other proposal								
	for monitoring:								
3.	PROTECTION OF								
	ENVIRONMENT								
a)	Afforestation:	1000	1000, Sal, Sagwan, Mahaguni, & others						

		Operatin/area	Control	Sl	Sampling	Date	Perm.Limit	SPM	RSPM	SO2	NO2
b)	Quality of Air:		measures	NO	Location						
		Drilling	Wet drilling	Α	Industrial			700	350	5000	6000
		Blasting	Use of stemming		Area						
			material	1	Mininig	7/01/19	Actual	89	44	15	14
		Haul Road	Water sprinkling		Field						
		Hill top	Water		office						
		crushing	spraying/fogging	2	Hopper	9/01/19	Actual	91	43	14	13
		plant		В	Residential			PM10	PM2.5	SO2	NO2
		Waste dump	Stabilization of		Area		Perm Limit	100	60	80	80
			dump through	1	Hospital	15/1/19	Actual		17	BDL	BDL
			affroestation	2	Township		Actual		19	BDL	BDL
					Duty						
					Room						
		The water table will not be touched.		Sl	Parame	ter	Norms	Value			
c)	Quality of	However due to surface run offs		No							
	Water:/Ground	there will be likely impact on the		1	ph		6.5 to 8.5	6.8			
	water	surface quality. The present set up		2	Turbidity(1	NTU)	<5	2.7			
		of garland drai	ins & retaining wall	3	Dissolved S	Solids	500	1.7			
		will divert th	e course of runoff	4	Flouric	le	1	N/D			
		water though se	eries of check dams.	5	Hexaval	ent	0.05	N/D			
					Chromit	ım					
				6	Iron		0.3	0.1			
				7	Mangan	ese	0.1	0.03			
d)	Noise level:	Noise level r	reduced by proper		Noise level re	educed by proper maintenance & use of protective					
,		maintenance &	& use of protective	equipment							
		equ	uipment								
e)	Vibration(due to	The blast indice	ed ground vibrations	The blast indiced ground vibrations will be controlled through limiting the					ting the		
	blasting)	will be controlle	d through limiting the	e charge per delay by NONEL means of initiation							
		charge per delay	by NONEL means of								
		in	itiation								

4. History of Violations after approval of Mining Plan or Scheme of Mining:

SI.	Date of	Name of Inspecting	Violations of MCDR,88 observed and			Rectification o	f Remarks	
No.	Inspection	Officer	Pointed out			Violations		
	28/08/2018	Office Record	Rule -45 (5) & Rule-33			Compliance to		
1						violation on		
						13.09.2018		
2	17/12/2018	Sri B P Kerketta	Rule-11	(1)		Compliance und	er	
		Sr ACOM	(A) Authenticated DGPS map by State Govt			process.		
			(B)	Development as per Minin	g plan.	Compliance und	er	
						process.		
5. So	cio-Economic Dev	velopment Plan:						
SI.	Proposed Action Plan towards Socio-			Expenditure	Expendit	ire	Remarks	
No.	o. Economic Development			Proposed	Incurred	••		
				(In Rs. Lakh)	(In Rs. La	ikh)		
1.	General Development in the area							
				0.00				
	1) Housing			0.38				
	ii) Water Supply							
	iii) Sanitation							
	iv) Health, Safety and Medical Facilities			23.35	27.24			
				-				
2.	Education and Training			56.64	40.39			
3.	Employment to local inhabitants			11.29	6.88			
4.	Public Transportation and communication							
5.	Recreation and or	ther sports activities		57.57	51.02			
6.	Expenditure for e	environment managemen	t					
7.	Other			0.19	0.05			
	Total:			149.42	125.60			